Copied to
clipboard

G = C7×C8⋊C22order 224 = 25·7

Direct product of C7 and C8⋊C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7×C8⋊C22, D82C14, C567C22, C28.63D4, SD161C14, M4(2)⋊1C14, C28.48C23, C8⋊(C2×C14), (C7×D8)⋊6C2, C4○D42C14, (C2×D4)⋊5C14, D42(C2×C14), Q82(C2×C14), C4.14(C7×D4), (D4×C14)⋊14C2, (C7×SD16)⋊5C2, C2.15(D4×C14), C14.78(C2×D4), (C2×C14).24D4, C22.5(C7×D4), (C7×D4)⋊11C22, (C7×M4(2))⋊5C2, C4.5(C22×C14), (C7×Q8)⋊10C22, (C2×C28).69C22, (C7×C4○D4)⋊7C2, (C2×C4).10(C2×C14), SmallGroup(224,171)

Series: Derived Chief Lower central Upper central

C1C4 — C7×C8⋊C22
C1C2C4C28C7×D4C7×D8 — C7×C8⋊C22
C1C2C4 — C7×C8⋊C22
C1C14C2×C28 — C7×C8⋊C22

Generators and relations for C7×C8⋊C22
 G = < a,b,c,d | a7=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, cd=dc >

Subgroups: 116 in 68 conjugacy classes, 40 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, D4, Q8, C23, C14, C14, M4(2), D8, SD16, C2×D4, C4○D4, C28, C28, C2×C14, C2×C14, C8⋊C22, C56, C2×C28, C2×C28, C7×D4, C7×D4, C7×D4, C7×Q8, C22×C14, C7×M4(2), C7×D8, C7×SD16, D4×C14, C7×C4○D4, C7×C8⋊C22
Quotients: C1, C2, C22, C7, D4, C23, C14, C2×D4, C2×C14, C8⋊C22, C7×D4, C22×C14, D4×C14, C7×C8⋊C22

Smallest permutation representation of C7×C8⋊C22
On 56 points
Generators in S56
(1 26 24 51 39 43 16)(2 27 17 52 40 44 9)(3 28 18 53 33 45 10)(4 29 19 54 34 46 11)(5 30 20 55 35 47 12)(6 31 21 56 36 48 13)(7 32 22 49 37 41 14)(8 25 23 50 38 42 15)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)
(2 4)(3 7)(6 8)(9 11)(10 14)(13 15)(17 19)(18 22)(21 23)(25 31)(27 29)(28 32)(33 37)(34 40)(36 38)(41 45)(42 48)(44 46)(49 53)(50 56)(52 54)
(2 6)(4 8)(9 13)(11 15)(17 21)(19 23)(25 29)(27 31)(34 38)(36 40)(42 46)(44 48)(50 54)(52 56)

G:=sub<Sym(56)| (1,26,24,51,39,43,16)(2,27,17,52,40,44,9)(3,28,18,53,33,45,10)(4,29,19,54,34,46,11)(5,30,20,55,35,47,12)(6,31,21,56,36,48,13)(7,32,22,49,37,41,14)(8,25,23,50,38,42,15), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(17,19)(18,22)(21,23)(25,31)(27,29)(28,32)(33,37)(34,40)(36,38)(41,45)(42,48)(44,46)(49,53)(50,56)(52,54), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56)>;

G:=Group( (1,26,24,51,39,43,16)(2,27,17,52,40,44,9)(3,28,18,53,33,45,10)(4,29,19,54,34,46,11)(5,30,20,55,35,47,12)(6,31,21,56,36,48,13)(7,32,22,49,37,41,14)(8,25,23,50,38,42,15), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(17,19)(18,22)(21,23)(25,31)(27,29)(28,32)(33,37)(34,40)(36,38)(41,45)(42,48)(44,46)(49,53)(50,56)(52,54), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56) );

G=PermutationGroup([[(1,26,24,51,39,43,16),(2,27,17,52,40,44,9),(3,28,18,53,33,45,10),(4,29,19,54,34,46,11),(5,30,20,55,35,47,12),(6,31,21,56,36,48,13),(7,32,22,49,37,41,14),(8,25,23,50,38,42,15)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56)], [(2,4),(3,7),(6,8),(9,11),(10,14),(13,15),(17,19),(18,22),(21,23),(25,31),(27,29),(28,32),(33,37),(34,40),(36,38),(41,45),(42,48),(44,46),(49,53),(50,56),(52,54)], [(2,6),(4,8),(9,13),(11,15),(17,21),(19,23),(25,29),(27,31),(34,38),(36,40),(42,46),(44,48),(50,54),(52,56)]])

C7×C8⋊C22 is a maximal subgroup of   D2818D4  M4(2).D14  M4(2).13D14  D28.38D4  SD16⋊D14  D85D14  D86D14

77 conjugacy classes

class 1 2A2B2C2D2E4A4B4C7A···7F8A8B14A···14F14G···14L14M···14AD28A···28L28M···28R56A···56L
order1222224447···78814···1414···1414···1428···2828···2856···56
size1124442241···1441···12···24···42···24···44···4

77 irreducible representations

dim111111111111222244
type+++++++++
imageC1C2C2C2C2C2C7C14C14C14C14C14D4D4C7×D4C7×D4C8⋊C22C7×C8⋊C22
kernelC7×C8⋊C22C7×M4(2)C7×D8C7×SD16D4×C14C7×C4○D4C8⋊C22M4(2)D8SD16C2×D4C4○D4C28C2×C14C4C22C7C1
# reps11221166121266116616

Matrix representation of C7×C8⋊C22 in GL4(𝔽113) generated by

106000
010600
001060
000106
,
184063106
000112
0100
1111126295
,
119191
011200
000112
001120
,
105118
0100
001120
000112
G:=sub<GL(4,GF(113))| [106,0,0,0,0,106,0,0,0,0,106,0,0,0,0,106],[18,0,0,111,40,0,1,112,63,0,0,62,106,112,0,95],[1,0,0,0,1,112,0,0,91,0,0,112,91,0,112,0],[1,0,0,0,0,1,0,0,51,0,112,0,18,0,0,112] >;

C7×C8⋊C22 in GAP, Magma, Sage, TeX

C_7\times C_8\rtimes C_2^2
% in TeX

G:=Group("C7xC8:C2^2");
// GroupNames label

G:=SmallGroup(224,171);
// by ID

G=gap.SmallGroup(224,171);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-2,697,2090,5044,2530,88]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,c*d=d*c>;
// generators/relations

׿
×
𝔽